论文部分内容阅读
中文微博包含了用户对热点话题的观点,对其进行观点挖掘可以实现突发事件预警、舆情监控等。目前,微博研究多数基于英文语料,中文微博观点句的挖掘大多混淆在情感挖掘中少量提及,由于中文微博特殊的语体特征,导致传统中文文本观点挖掘模型无法取得理想效果。区别于已有的情感挖掘工作,本文依据中文微博的语体特征分析结果选取特征,除了选取情感特征外,还加入主张性动词、语气词、程度副词以及固定词性结构等观点句特征,采用CRFs模型进行观点句识别研究。实验结果表明,仅选取情感特征准确率较高,但召回率仅为32.1%,而加入其他观点句特征后,召回率显著提高到61.8%。该方法应用于2012年中国计算机学会(CCF)组织的"观点句识别"测评任务中,取得了很好的效果。