论文部分内容阅读
针对复杂图像易受背景干扰的问题,提出一种基于显著性与脉冲耦合神经网络(Saliency and Pulse Coupled Neural Network,SPCNN)的图像分割方法。首先,利用显著性检测算法和最大类间方差法获得显著性图以及目标图像,排除了背景对初始种子点选取的干扰;然后,计算出显著性图的质心,并将其作为初始种子点;最后,采用改进的基于区域生长的脉冲耦合神经网络对目标图像进行分割。在Berkeley图像库和Ground truth Database图像库上对SPCNN模型进行了验证。实