An Anomalous Behavior Detection Model in Cloud Computing

来源 :Tsinghua Science and Technology | 被引量 : 0次 | 上传用户:yilvQINGFENG
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines(VMs) are one of the key components of cloud Infrastructure as a Service(Iaa S). The security of such VMs is critical to Iaa S security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate.More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed—leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks(SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model. This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (Iaa S). The security of such VMs is critical to Iaa S security. Many studies have has done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication in VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed-leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. Th e experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model.
其他文献
(一) 社会主义企业的利润核算是企业劳动者为社会劳动所创造的价值,它构成企业的纯收入,也叫做剩余产品的价值,是扩大社会主义再生产和提高人民物质文化生活水平所需资金的
设计师解析这是一处重新规划过的家居,我们利用开放式厨房及格栅屏风区隔空间,增加透明度及空间感当阳光倾泻而入,于空间中自然游走,或穿俊于格栅屏风之间,或跳跃在悬浮楼梯
脑血管病是危害人民健康的一种常见病,近年来在国内外已引起越来越多的重视。血小板对血栓形成有重要的作用。人们发现一类抗血小板药物能抑制血小板的功能,对预防和治疗血
中国企业界如何创建学习型组织?一向以培训著称的东大阿尔派公司以其独创的内部导师制对创建学习型组织进行了大胆尝试和探索,不仅提升了培训理念,而且将企业培训推向了一个
做父亲的常常认为抚育孩子是妈妈的事,而忽略了自己做父亲的责任,他们把辅导孩子做作业、参加孩子学校的家长会、以及对孩子的品德教育等都推给母亲,自己则忙于工作,对孩子
本文收集我院内科1980—1983年年龄在40岁以上的住院脑血栓及脑出血患者122例,其中40—59岁者67例为中年组,60岁以上者55例为老年组,并将其两组之临床特点作以分析比较,以求
《语文课程标准》指出:“写作要有真情实感,力求表达自己对自然、社会、人生的感受、体验和思考。”这一要求给作文教学指明了方向,“原生态”作文教学正是以学生为本,唤醒学
目的 探讨高密度脂蛋白胆固醇浓度与脓毒症的发生、发展及预后的关系.方法检测同期住ICU非脓毒症患者与脓毒症患者各40例的高密度脂蛋白胆固醇浓度,并进行分析比较.结果脓毒症患者的高密度脂蛋白胆固醇浓度较非脓毒症患者明显降低(P<0.05),脓毒症死亡组的高密度脂蛋白胆固醇浓度较存活组明显偏低(P<0.01),且脓毒症死亡组的高密度脂蛋白胆固醇呈进行性降低.结论高密度脂蛋白胆固醇浓度与脓毒症的发生、发
Duchenne 型肌营养不良症(DMD)的肌钙积蓄过多已经组织学、x 线萤光光谱镜以及化学分折所证实。此外,本文作者还曾观察到其肌镁明显减少。肌钙积蓄在肌肉萎缩的发病机理中是
我院自1985年5月至1988年5月经 CT证实的120例(住院91例,门诊29例)腔隙梗塞结合文献进行回顾性分析。临床资料本组120例,男性97例,女性23例,男∶女=4.2∶1.年龄23~84岁,50岁