论文部分内容阅读
A new model is derived to predict the peak ground acceleration(PGA) utilizing a hybrid method coupling artificial neural network(ANN) and simulated annealing(SA), called SA-ANN. The proposed model relates PGA to earthquake source to site distance, earthquake magnitude, average shear-wave velocity,faulting mechanisms, and focal depth. A database of strong ground-motion recordings of 36 earthquakes,which happened in Iran’s tectonic regions, is used to establish the model. For more validity verification,the SA-ANN model is employed to predict the PGA of a part of the database beyond the training data domain. The proposed SA-ANN model is compared with the simple ANN in addition to 10 well-known models proposed in the literature. The proposed model performance is superior to the single ANN and other existing attenuation models. The SA-ANN model is highly correlated to the actual records(R=0.835 and r =0.0908) and it is subsequently converted into a tractable design equation.
A new model is derived to predict the peak ground acceleration (PGA) utilizing a hybrid method coupling artificial neural network (ANN) and simulated annealing (SA), called SA-ANN. The proposed model on PGA to earthquake source to site distance, earthquake magnitude, average shear-wave velocity, faulting mechanisms, and focal depth. A database of strong ground-motion recordings of 36 earthquakes, which happened in Iran’s tectonic regions, is used to establish the model. model proposed employed to predict the PGA of a part of the database beyond the training data domain. The proposed SA-ANN model is compared with the simple ANN in addition to 10 well-known models proposed in the literature. The proposed model performance is superior the SA-ANN model is highly correlated to the actual records (R = 0.835 and r = 0.0908) and it is subsequently converted into a tractable design equation.