论文部分内容阅读
针对纺织行业织物疵点检测自动化的需求,提出了基于二维经验模态分解(BEMD)的织物疵点分割方法的改进。在BEMD算法中,使用基于Delaunay三角化(DT)的三次样条分段插值替代基于径向基函数(RBF)的全局插值,以提高计算效率和分解有效性。在BEMD的分解结果中,选择第二个和第三个内蕴模式函数(IMF)进行融合后进行分割以提高疵点分割结果的完整性。实验中以多幅典型的疵点织物为样本,对比了不同插值方法和分割对象的检测误差率(DER),结果显示改进后的疵点分割方法具有更好的计算效率和鲁棒性。