论文部分内容阅读
针对传统最优-最差蚂蚁系统(BWAS)存在搜索效率低、收敛速度慢的缺点,提出一种基于启发式演化算法的最优-最差蚂蚁系统(IEABWAS)算法。该算法通过加入启发式演化算子,在算法的每次迭代中将最优蚂蚁与次优蚂蚁执行启发式的演化算子操作,并将这种演化操作产生的较好个体替代系统中最差的个体,以达到快速收敛的目的。同时,为使搜索更加集中于最优解附近,对最优-最差蚂蚁的信息素更新方式进行适应性调整,以提高算法的全局搜索能力。使用该算法求解复杂旅行商问题(TSP),结果表明:与传统的最优-最差蚂蚁系统相比,该算法不