In vivo testing of mucus-permeating nanoparticles for oral insulin delivery using Caenorhabditis ele

来源 :药学学报(英文版) | 被引量 : 0次 | 上传用户:jm8888jm8888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The aim was to evaluate the potential of mucus-permeating nanoparticles for the oral admin-istration of insulin.These nanocarriers,based on the coating of zein nanoparticles with a polymer con-jugate containing PEG,displayed a size of 260 nm with a negative surface charge and an insulin payload of 77 μg/mg.In intestinal pig mucus,the diffusivity of these nanoparticles(PPA-NPs)was found to be 20-fold higher than bare nanoparticles(NPs).These results were in line with the biodistribution study in rats,in which NPs remained trapped in the mucus,whereas PPA-NPs were able to cross this layer and reach the epithelium surface.The therapeutic efficacy was evaluated in Caenorhabditis elegans grown under high glucose conditions.In this model,worms treated with insulin-loaded in PPA-NPs displayed a longer lifespan than those treated with insulin free or nanoencapsulated in NPs.This finding was associated with a significant reduction in the formation of reactive oxygen species(ROS)as well as an important decrease in the glucose and fat content in worms.These effects would be related with the mucus-permeating ability of PPA-NPs that would facilitate the passage through the intestinal peritrophic-like dense layer of worms(similar to mucus)and,thus,the absorption of insulin.
其他文献
When nanoparticles were introduced into the biological media,the protein corona would be formed,which endowed the nanoparticles with new bio-identities.Thus,controlling protein corona for-mation is critical to in vivo therapeutic effect.Controlling the pa
As one of the most important components of caveolae,caveolin-1 is involved in caveolae-mediated endocytosis and transcytosis pathways,and also plays a role in regulating the cell membrane cholesterol homeostasis and mediating signal transduction.In recent
Ten years ago,in 2011,we founded Acta Pharmaceutica Sinica B(APSB) with the goal of creating a global high-level forum centered around drug discovery and pharmaceutical research/application.Our first priority was and will always be to serve our readers an
期刊
Current advances of immunotherapy have greatly changed the way of cancer treatment.At the same time,a great number of nanoparticle-based cancer immunotherapies(NBCIs)have also been explored to elicit potent immune responses against tumors.However,few NBCI
CD8+ T lymphocytes are pivotal cells in the host response to antitumor immunity.Tumor-driven microenvironments provide the conditions necessary for regulating infiltrating CD8+ T cells in favor of tumor survival,including weakening CD8+ T cell activation,
The beneficial or deleterious effects of nanomedicines emerge from their complex interac-tions with intracellular pathways and their subcellular fate.Moreover,the dynamic nature of plasma membrane accounts for the movement of these nanocarriers within the
The intracellular retention of nanotherapeutics is essential for their therapeutic activity.The immobilization of nanotherapeutics inside target cell types can regulate various cell behaviors.However,strategies for the intracellular immobilization of nano
Nanocrystal formulations have been explored to deliver poorly water-soluble drug molecules.Despite various studies of nanocrystal formulation and delivery,much more understanding needs to be gained into absorption mechanisms and kinetics of drug nanocryst
Self-microemulsifying drug delivery systems(SMEDDSs)have recently returned to the lime-light of academia and industry due to their enormous potential in oral delivery of biomacromolecules.However,information on gastrointestinal lipolysis and trans-epithel
A major mitochondrial enzyme for protecting cells from acetaldehyde toxicity is aldehyde dehydrogenase 2 (ALDH2).The correlation between ALDH2 dysfunction and tumorigenesis/growth/metastasis has been widely reported.Either low or high ALDH2 expression con