Deep Learning-Based Prediction of Traffic Accidents Risk for Internet of Vehicles

来源 :中国通信(英文版) | 被引量 : 0次 | 上传用户:fishingalone
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
With the increasing number of vehicles,traffic accidents pose a great threat to human lives.Hence,aiming at reducing the occurrence of traffic ac-cidents,this paper proposes an algorithm based on a deep convolutional neural network and a random for-est to predict accident risks.Specifically,the proposed algorithm includes a feature extractor and a feature classifier,where the former extracts key features using a convolutional neural network and the latter outputs a probability value of traffic accidents using a random forest with multiple decision trees,which indicates the degree of accident risks.Simulations show that the proposed algorithm can achieve higher performance in terms of the Area Under the Curve (AUC) of the Re-ceiver Characteristic Operator as well as accuracy than the existing algorithms based on the Adaboost or the pure convolutional neural networks.
其他文献
以上海市一座既有高航道桥船舶撞击风险及抗撞性能评估为例,建立既有航道桥梁船舶撞击风险评估和抗撞性能分析方法框架,包括船舶撞击风险隐患识别和综合评估研究.风险隐患识别研究包括桥梁航标校验、通航净空尺度复核以及新老抗撞性能标准的对比;综合评估研究包括通航水域通航安全风险分析和结构抗撞性能分析.研究为类似桥梁的评估分析提供参考.
Steady-state visual evoked potential(SSVEP) has become a powerful tool for Brain Com-puter Interface (BCI) because of its high signal-to-noise ratio,high information transmission rate,and minimal user training.At present,the edge information of each regio
深水桥墩钢板桩围堰深层水平位移值是钢板桩围堰安全关键指标.GB 50497—2019《建筑基坑工程监测标准》要求钢板桩支护结构深层水平累计位移预警值采取双控,取累计位移绝对值和相对基坑设计深度H控制值中的较小值作为预警值.以某大桥工程项目为例,对深水桥墩钢板桩围堰深层水平位移值进行研究,空间有限元法计算值和现场实测值表明,深水桥墩钢板桩围堰深层水平位移累计绝对值远超GB 50497—2019规定的预警值.由于钢板桩围堰位于河道中,是一个相对独立的体系,采用相对基坑设计深度H控制值作为预警值对钢板桩深层水平
为更准确评价单行交通组织从开始实施至达到预期目的整个过程中路网服务水平的变化情况,提出一种考虑出行者适应过程的单行交通组织评价方法.首先基于出行者适应过程的考虑,从优化效益、负面影响和达到预期所花费时间3个层面的长期实施与短期实施的单行交通组织方案,建立评价指标;然后基于动态用户均衡的交通分配,通过计算分析每一天的路网服务水平,描述单行交通组织方案从开始实施至达到预期目的整个过程中路网服务水平的变化情况,形成评价指标的计算方法.通过算例对比不同路网组织方案在不同交通需求和实施期限情况下的运行效率,分析单行
为强化多源污染型流域治理效果,需因地制宜制定系统性、整体化的解决方案.针对雄县马庄干渠流域因快速城镇化发展带来的污染源复杂多样、水环境质量差、水生态不平衡等问题,提出适用于水体、底泥、岸坡等多个作用对象的全方位、多层次型综合生态治理方案.通过人工湿地、底质改良、生态驳岸整治、生态浮岛等多种治理手段,建立水体自然生态功能,提高水体自净能力.
The non-stationary of the motor imagery electroencephalography(MI-EEG) signal is one of the main limitations for the development of motor im-agery brain-computer interfaces(MI-BCI).The non-stationary of the MI-EEG signal and the changes of the experimenta
Ocular artifacts in Electroencephalo-graphy (EEG) recordings lead to inaccurate results in signal analysis and process.Variational Mode Decom-position (VMD) is an adaptive and completely non-recursive signal processing method.There are two parameters in V
Cognitive state detection using electroen-cephalogram (EEG) signals for various tasks has at-tracted significant research attention.However,it is difficult to further improve the performance of cross-subject cognitive state detection.Further,most of the e
Ambient backscatter is a new green tech-nology for Internet of Things (IoT) that utilizes sur-rounding wireless signals to enable batteryless devices to communicate with other devices.The battery-free devices first harvest energy from ambient wireless sig
Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link hetero-geneity a