论文部分内容阅读
针对同源和异源的多传感器图像的特征,提出了一种基于非下采样Contourlet变换(NSCT)和脉冲耦合神经网络(PCNN)的新的图像融合算法。首先,用NSCT对已配准的源图像进行分解,从而准确地提取出了二维和更高维的边缘纹理信息;其次,对低频子带系数采用区域方差进行了整合,从而得到融合图像的低频子带系数,而对高频子带系数提出了一种改进的基于PCNN的图像融合方法来确定融合图像的各带通子带系数;最后通过对所有子带系数进行NSCT逆变换,从而得到了融合图像。实验结果表明,该方法优于Mallat小波方法