论文部分内容阅读
An 8μm thick Ga-doped ZnO(GZO) film grown by metal-source vapor phase epitaxy was deposited on a GaN-based light-emitting diode(LED) to substitute for the conventional ITO as a transparent conduct layer(TCL). Electroluminescence spectra exhibited that the intensity value of LED emission with a GZO TCL is markedly improved by 23.6%as compared to an LED with an ITO TCL at 20 mA.In addition,the forward voltage of the LED with a GZO TCL at 20 mA is higher than that of the conventional LED.To investigate the reason for the increase of the forward voltage,X-ray photoelectron spectroscopy was performed to analyze the interface properties of the GZO/p-GaN heterojunction.The large valence band offset(2.24±0.21 eV) resulting from the formation of Ga_2O_3 in the GZO/p-GaN interface was attributed to the increase of the forward voltage.
An 8 μm thick Ga-doped ZnO (GZO) film grown by metal-source vapor phase epitaxy was deposited on a GaN-based light-emitting diode (LED) to substitute for the conventional ITO as a transparent conductance layer (TCL). The light intensity of LED emission with a GZO TCL is markedly improved by 23.6% as compared to an LED with an ITO TCL at 20 mA. In addition, the forward voltage of the LED with a GZO TCL at 20 mA is higher than that of the conventional LED. To investigate the reason for the increase of the forward voltage, X-ray photoelectron spectroscopy was performed to analyze the interface properties of the GZO / p-GaN heterojunction. The large valence band offset (2.24 ± 0.21 eV) resulting from the formation of Ga_2O_3 in the GZO / p-GaN interface was attributed to the increase of the forward voltage.