论文部分内容阅读
为了改进蚁群算法因大量引入随机机制所引发的不稳定性,引入巢模板来改进聚类规则,提出一种基于巢模板的核空间蚁群聚类算法,并与原空间上的聚类算法进行比对。该算法用支持向量机的非线性映射函数把数据样本映射到核空间,再用巢模板记忆蚁群群体特征。核空间上的巢模板蚁群聚类算法能较好地处理特征复杂、类别多的数据集,其聚类结果比较接近真实情况,并且效果明显优于原空间上的聚类算法。