论文部分内容阅读
协同过滤是个性化推荐系统中使用最为广泛的一种推荐算法之一,分为基于用户和基于项目两种协同过滤算法.本文提出的改进算法将两种方法相结合使用,首先改进了传统的相似度度量方法,再分别利用用户和项目之间的相似度值预测未评分项目值,并将两种预测结果加权平均,根据用户近邻数和项目近邻数动态确定加权系数.实验结果表明,改进后的协同过滤算法可以提高推荐质量.