论文部分内容阅读
针对现有驾驶疲劳状态识别算法中存在疲劳特征维数高、识别效率低下、计算量大等问题,本文提出一种基于在线字典学习形变模型的疲劳状态识别方法。采用红外疲劳人脸图像中关键变形区域LBP特征构建人脸形变模型;将在线字典学习算法引入到形变模型中,采用过完备基函数矩阵代替训练样本整体对待测样本进行线性表示,利用其组合系数的稀疏性进行人脸疲劳状态识别;采用时间窗结合贝叶斯方法对识别算法进行优化。实验结果表明,与传统的识别方法相比,本文所提算法可以降低系统的运算量,提高疲劳状态识别的鲁棒性和准确率,在实际驾驶环境中能