论文部分内容阅读
针对传统主动学习(AL)方法对大规模的无标记样本分类收敛速度过慢的问题,提出了基于层次聚类(HC)的主动学习训练算法——HC_AL方法。通过对大规模的未标记数据进行层次聚类,并对每个层次上的类中心打标记来代替该层次上的类标记,然后将该层次上具有错误标记的类中心加入训练集。在数据集上的实验取得了较好的泛化能力和较快的收敛速度。实验结果表明通过采用分层细化、逐步求精的方法,可使主动学习的收敛速度大大提高,同时获得较为满意的学习能力。