论文部分内容阅读
高光谱图像分类是遥感领域研究的热点问题,其关键在于利用高光谱图谱合一的优势,同时融合高光谱图像中各个像元位置的光谱信息和空间信息,提高光谱图像分类精度。针对高光谱图像特征维数高和冗余信息多等问题,采用多视图子空间学习方法进行特征降维,提出了图正则化的多视图边界判别投影算法。将每个像元处的光谱特征看作一个视图,该像元处的空间特征看作另一个视图,通过同时优化每个视图上的投影方向来寻找最优判别公共子空间。公开测试数据集上的分类实验表明,多视图学习在高光谱图像空谱融合分类方面具有显著的优越性,在多视图降维算