论文部分内容阅读
现有的大多数情感识别算法在进行连续情感识别时稳健性较差,影响了识别的精度。为此,提出一种基于随机森林的连续情感识别和跟踪算法,可持续识别出人脸在正常交流过程中的各种情感。在训练阶段,首先重建输入图像的三维脸部模型。并通过图像融合来构建连续情感表示(CEP)和用户无关情感表示(UIEP)。然后,由三维脸部形态、CEP图像及其情感值构成增强型训练集,并利用该训练集来构建随机森林。在情感估计阶段,随机森林同时进行两种回归操作:一种是针对三维脸部表情的跟踪;一种是针对当前情感的识别。当前时间步骤的CEP图像