论文部分内容阅读
研究了径向空间中带有Sobolev临界指数的Schrodinger方程,不要求方程临界项带有的位势满足周期或渐近周期的相关条件.主要利用Nehari流形和Ekeland变分原理找到相应流形上的极小化序列,进而证明基态径向解的存在性.最后运用强极大值原理证明方程的解是正解,从而得到方程的正基态径向解.