论文部分内容阅读
为解决动态环境下的多中心优化问题,提出自学习差异进化算法。通过评估特定个体检测到环境变化,自学习算子将群体引至新的环境,并保持群体的拓扑结构不变,以继续当前的进化趋势。采用邻域搜索机制加快算法的收敛速度,引入随机个体迁入机制增加群体多样性。实验以周期动态函数为测试对象,比较自学习差异进化算法与部分智能优化算法的性能,结果表明,新算法有更快的收敛速度和更好的环境适应能力。