论文部分内容阅读
摘要:本文采用线性过滤器中的自回归模型,模拟节点随机脉动风速时程,运用Matlab编程有效地模拟具有时间相关性、空间相关性的脉动风速时程。针对高耸塔桅结构提出了对脉动风荷载进行适时量化处理的计算方法,使设计更为科学、合理。
关键词:高耸塔桅结构,自回归法,时程分析
一、引言
在结构设计的荷载中,风荷载是重要的设计荷载之一。特别是对于跨越空间大、结构趋于柔性化的结构,如高耸塔桅结构、大跨空间结构,风荷载可能成为控制结构设计的关键因素。设计荷载是原始设计数据,它对结构计算的影响要比采用任何精确计算方法所产生的误差大得多。因此,确定设计荷载要准确,要符合实际,取值小了,固然影响结构安全,但取值大了,不仅造成材料浪费,而且会给设计带来难度,最终导致不合理设计。
二、风荷载的特性及计算机模拟
风是由于太阳对地球的不均匀加热,使得空气在具有不同气压的区域间流动而形成的。风作用是不规则的,风压随着风速、风向的紊乱变化而不停的改变。通常把风作用的平均值看成稳定风压,而实际风压是在平均风压上下波动[1]。在风的顺风向时程曲线中,一般包含有平均风和脉动风两部分,平均风是在给定时间间隔内,风力大小、方向不随时间发生改变。脉动风则随时间按随机规律变化,要用随机振动理论来处理[2]。
目前,实测的空间风场曲线记录很少,很难满足工程计算的要求,因此对具有空间相关性的风场进行计算机模拟就显得十分必要,本文采用线性自回归过滤器法模拟风速时程。自回归模型的定义为[3]:任何一个时刻t上的数值vt可表示为过去p个时刻上数值vt-1,vt-2,…,vt-p的线性组合加上t时刻的白噪声,因此p阶自回归过滤器可用如下方程表示:
(1)
式中:Δt为时间步长;N (t)为均值为0、方差为1的正态分布随机数,即白噪声;ψk为自回归参数。
将上式两端分别乘 并取数学期望,可得到式(2)。自回归参数ψk可由式(2)解出。
(2)
其中Rv(jΔt)是风速时间序列的自相关函数,可表达为如下形式:
(3)
将式(1)两端分别乘 并取数学期望,即可由自回归参数ψk得
(4)
作者简介:吴泽家(1980-),山东临沂人,现从事结构工程设计与研究.
由于结构具有一定尺度,结构上各点的风速、风向并不是完全同步的,甚至可能是完全无关的,因此,脉动风具有一定的空间相关性。当结构上一点的风压达到最大值时,在一定范围内离该点愈远处的风荷同时达到最大值的可能性就愈小。前面生成的风速时间序列v0(t)只考虑了风速的自谱密度函数,在实际结构计算中,风场不仅要计及时间上的相关性,还要考虑空间上的相关性,即互谱密度。因此,需要将N个统计无关的随机过程v0(t)转换为N个具有给定相关性的随机过程v (t),其转换形式如下:
(5)
C为一下三角矩阵,矩阵元素Cji可用如下形式的递推公式确定:
(6)
(7)
式中Rji是风速时间序列的互相关函数,通过下式求得:
(8)
其中 为j点与i点的风速互谱密度,由下式求出:
(9)
对于大跨空间结构而言,应采用三维空间相干函数:
(10)
式中Cx、Cy、Cz分别表示空间上的左右、前后、上下的衰减系数。
本文利用Matlab软件,考虑时间及空间相关性,编制了水平风速随机模拟程序,图1-2分别为生成的塔架顶点和塔架中部基本风速为25m/s、地面粗糙度系数为0.00464、持时100s的风速时程曲线。
图1 采用线性自回归过滤器法模拟的塔顶一点风速曲线
图2 采用线性自回归过滤器法模拟的塔中一点风速曲线
三、塔架响应分析
图3 高耸塔架立面图 图4 高耸塔架塔顶节点位移响应图
本文通過瞬态动力学分析来实现结构的风振响应时程分析。其分析步骤如下:
建模:本文分析塔架高95米,用有限元软件ANSYS建立结构有限元模型,用Beam4单元来模拟塔架杆件,用Mass21单元来模拟等效节点集中质量,给定其实常数(包括杆件截面特性、集中质量大小)和材料属性(包括弹性模量、泊松比)。
加载并求解:风荷载的计算方法如下:将各节点的风速曲线记录定义为数组读入,根据伯努利(Bernoulli)方程 计算其速度压,其中, 为空气容重(kN/m3), 为重力加速度(m/s2)。然后乘以该点的风载体型系数和节点所辖面积,即可将塔架表面的风压转化为节点集中荷载。将各个时间步的荷载施加到结构上逐步进行求解,即可获得塔架结构在风荷载作用下的风振时程响应。本文基于ANSYS中的APDL语言编制了塔架结构的有限元模型生成程序、风荷载计算程序、风振时程分析及其后处理程序。图4为本文利用上述方法得到的塔架顶点的位移响应。
五、结论
(1)本文利用Matlab软件,应用自回归模型实现了考虑时间、空间相关性的网壳结构脉动风荷载时程模拟。AR脉动风仿真方法,具有省时、实用、精度高的优点。
(2)对高耸塔架结构在进行抗风设计时,建议除按照规范计算外,还应运用本文介绍的时域化方法进行时程分析。这比单独使用风振系数来考虑风的动力效应要科学、准确的多。
参考文献
[1]包世华,方鄂华.高层建筑结构设计[M],清华大学出版社,1989
[2]王之宏.风荷载的模拟研究[J],建筑结构学报,1994
[3]刘文洋.网架结构简化分析及球面网壳抗风数值模拟[D].大庆石油学院硕士论文,2006
注:文章内所有公式及图表请以PDF形式查看。
关键词:高耸塔桅结构,自回归法,时程分析
一、引言
在结构设计的荷载中,风荷载是重要的设计荷载之一。特别是对于跨越空间大、结构趋于柔性化的结构,如高耸塔桅结构、大跨空间结构,风荷载可能成为控制结构设计的关键因素。设计荷载是原始设计数据,它对结构计算的影响要比采用任何精确计算方法所产生的误差大得多。因此,确定设计荷载要准确,要符合实际,取值小了,固然影响结构安全,但取值大了,不仅造成材料浪费,而且会给设计带来难度,最终导致不合理设计。
二、风荷载的特性及计算机模拟
风是由于太阳对地球的不均匀加热,使得空气在具有不同气压的区域间流动而形成的。风作用是不规则的,风压随着风速、风向的紊乱变化而不停的改变。通常把风作用的平均值看成稳定风压,而实际风压是在平均风压上下波动[1]。在风的顺风向时程曲线中,一般包含有平均风和脉动风两部分,平均风是在给定时间间隔内,风力大小、方向不随时间发生改变。脉动风则随时间按随机规律变化,要用随机振动理论来处理[2]。
目前,实测的空间风场曲线记录很少,很难满足工程计算的要求,因此对具有空间相关性的风场进行计算机模拟就显得十分必要,本文采用线性自回归过滤器法模拟风速时程。自回归模型的定义为[3]:任何一个时刻t上的数值vt可表示为过去p个时刻上数值vt-1,vt-2,…,vt-p的线性组合加上t时刻的白噪声,因此p阶自回归过滤器可用如下方程表示:
(1)
式中:Δt为时间步长;N (t)为均值为0、方差为1的正态分布随机数,即白噪声;ψk为自回归参数。
将上式两端分别乘 并取数学期望,可得到式(2)。自回归参数ψk可由式(2)解出。
(2)
其中Rv(jΔt)是风速时间序列的自相关函数,可表达为如下形式:
(3)
将式(1)两端分别乘 并取数学期望,即可由自回归参数ψk得
(4)
作者简介:吴泽家(1980-),山东临沂人,现从事结构工程设计与研究.
由于结构具有一定尺度,结构上各点的风速、风向并不是完全同步的,甚至可能是完全无关的,因此,脉动风具有一定的空间相关性。当结构上一点的风压达到最大值时,在一定范围内离该点愈远处的风荷同时达到最大值的可能性就愈小。前面生成的风速时间序列v0(t)只考虑了风速的自谱密度函数,在实际结构计算中,风场不仅要计及时间上的相关性,还要考虑空间上的相关性,即互谱密度。因此,需要将N个统计无关的随机过程v0(t)转换为N个具有给定相关性的随机过程v (t),其转换形式如下:
(5)
C为一下三角矩阵,矩阵元素Cji可用如下形式的递推公式确定:
(6)
(7)
式中Rji是风速时间序列的互相关函数,通过下式求得:
(8)
其中 为j点与i点的风速互谱密度,由下式求出:
(9)
对于大跨空间结构而言,应采用三维空间相干函数:
(10)
式中Cx、Cy、Cz分别表示空间上的左右、前后、上下的衰减系数。
本文利用Matlab软件,考虑时间及空间相关性,编制了水平风速随机模拟程序,图1-2分别为生成的塔架顶点和塔架中部基本风速为25m/s、地面粗糙度系数为0.00464、持时100s的风速时程曲线。
图1 采用线性自回归过滤器法模拟的塔顶一点风速曲线
图2 采用线性自回归过滤器法模拟的塔中一点风速曲线
三、塔架响应分析
图3 高耸塔架立面图 图4 高耸塔架塔顶节点位移响应图
本文通過瞬态动力学分析来实现结构的风振响应时程分析。其分析步骤如下:
建模:本文分析塔架高95米,用有限元软件ANSYS建立结构有限元模型,用Beam4单元来模拟塔架杆件,用Mass21单元来模拟等效节点集中质量,给定其实常数(包括杆件截面特性、集中质量大小)和材料属性(包括弹性模量、泊松比)。
加载并求解:风荷载的计算方法如下:将各节点的风速曲线记录定义为数组读入,根据伯努利(Bernoulli)方程 计算其速度压,其中, 为空气容重(kN/m3), 为重力加速度(m/s2)。然后乘以该点的风载体型系数和节点所辖面积,即可将塔架表面的风压转化为节点集中荷载。将各个时间步的荷载施加到结构上逐步进行求解,即可获得塔架结构在风荷载作用下的风振时程响应。本文基于ANSYS中的APDL语言编制了塔架结构的有限元模型生成程序、风荷载计算程序、风振时程分析及其后处理程序。图4为本文利用上述方法得到的塔架顶点的位移响应。
五、结论
(1)本文利用Matlab软件,应用自回归模型实现了考虑时间、空间相关性的网壳结构脉动风荷载时程模拟。AR脉动风仿真方法,具有省时、实用、精度高的优点。
(2)对高耸塔架结构在进行抗风设计时,建议除按照规范计算外,还应运用本文介绍的时域化方法进行时程分析。这比单独使用风振系数来考虑风的动力效应要科学、准确的多。
参考文献
[1]包世华,方鄂华.高层建筑结构设计[M],清华大学出版社,1989
[2]王之宏.风荷载的模拟研究[J],建筑结构学报,1994
[3]刘文洋.网架结构简化分析及球面网壳抗风数值模拟[D].大庆石油学院硕士论文,2006
注:文章内所有公式及图表请以PDF形式查看。