论文部分内容阅读
传统的Laplacian特征映射是基于欧氏距离的近邻数据点的保持,近邻的高维数据点映射到内在低维空间后仍为近邻点,高维数据点的近邻选取最终将影响全局低维坐标.将测地线距离和广义高斯函数融合到传统的Laplacian特征映射算法中,首先提出了一种基于测地线距离的广义高斯型Laplacian特征映射算法(geodesic distance-based generalized Gaussian LE,简称GGLE),该算法在用不同的广义高斯函数度量高维数据点间的相似度时,获得的全局低维坐标呈现出不同的聚类