论文部分内容阅读
在拓展现有反向频繁挖掘问题定义,探索反向频繁项集的3个具体应用后,提出了一种基于FP-tree的反向频繁项集挖掘方法.该方法首先采用分治思想,将目标约束划分为若干子约束,每步求解一个子线性约束问题,经过若干步迭代后找到一个满足整个给定约束的目标FP-tree;然后根据目标FP-tree生成一个仅含频繁项的临时事务数据库TempD;最后通过向TempD中撒入非频繁项得到目标数据集.理论分析和实验表明该方法是正确的、高效的,且与现有方法仅能输出1个目标数据集相比,该方法能够输出较多的目标数据集.