论文部分内容阅读
在典型相关分析算法(canonical correlation analysis,简称CCA)的基础上,通过引入以成对约束形式给出的监督信息,提出了一种半监督的典型相关分析算法(Semi—CCA).在此算法中,除了考虑大量的无标号样本以外,还考虑成对约束信息,即已知两样本属于同一类(正约束)或不属于同一类(负约束),同时验证了两者的相对重要性.在人工数据集、多特征手写体数据集和人脸数据集(Yale和AR)上的实验结果表明,Semi-CCA能够有效地利用少量的监督信息来提高分类性能.