论文部分内容阅读
针对区间型数据的模糊c均值聚类(IFCM)算法在实际应用中的不足,将可能性理论引入区间型数据的聚类问题,通过放松样本隶属度的约束条件和修正IFCM算法的目标函数,提出一种区间型数据的可能性聚类算法。通过仿真模拟实验和平均CR指标分析,结果表明:在包含噪声和孤立点等代表性比较差的样本数据的聚类问题中,该算法明显优于IFCM算法,能有效地降低噪声对聚类效果的影响。