论文部分内容阅读
针对已有文本识别网络由于深度不够而识别准确率较低的问题,文中提出一种改进的端到端文本识别网络结构。首先,将文本作为序列,采用残差模块将文本按列切分成特征向量输入循环层。这种残差结构增加了卷积网络的深度,使网络保持对文本图像的最佳表征能力,实现对文本信息的捕捉。另一方面,残差模块采用堆叠层来学习残差映射,在层数加深的情况下提高了网络的收敛性。然后,采用循环层对这些文本特征序列进行上下文建模,并把建模结果输入Softmax层以获得序列对应标签的预测,实现了对任意长度文本的识别。循环层使用长短时记忆网络学