论文部分内容阅读
发现最大频繁项目集是数据挖掘应用中的关键问题;提出一种新的基于事务集迭代的求最大频繁项集算法,该算法在每次迭代时,通过对输入事务集的两次扫描,生成所有阶数的候选项集和频繁项集;每次迭代后又生成新的事务集作为下一次迭代的输入,而候选最大频繁项集集合则随着迭代不断地趋于完整。该算法不需要生成K-1阶候选项集或频繁树,有剐于已有的经典算法;同时由于用于迭代的事务集的数据量会快速缩减,从而也可有效降低算法的时间复杂度。实验表明在大数据量和小最小支持度时该算法更为有利。