论文部分内容阅读
无线传感器网络(WSN)节点能量与带宽均非常有限,难以适应大量数据长时间传输的需求,所以非常有必要对原始采集的数据进行聚合或压缩处理。利用传感数据间存在的时间相关性,提出分段常量近似与Haar小波压缩相结合的二级压缩算法,在误差可调的情况下压缩该类时间相关的传感数据。通过真实数据集上的实验,分析该算法的数据重构误差、数据压缩比与压缩耗时情况,并与其他压缩算法进行对比。实验结果表明,该算法能够有效地利用传感数据中存在的时间相关性,显著减少冗余数据,有较高的压缩比并保证数据精度。