论文部分内容阅读
为了对煤矿瓦斯监测数据进行有效分析,以实现准确、可靠的回采工作面绝对瓦斯涌出量预测,提出了蚁群聚类算法优化Elman神经网络的绝对瓦斯涌出量动态预测方法。算法通过对Elman神经网络的权值、阈值寻优,建立了基于ACC-ENN算法的绝对瓦斯涌出量预测模型,并结合矿井监测到的历史数据进行实例分析。试验结果表明:经蚁群聚类优化后的Elman神经网络绝对瓦斯涌出量预测模型较其他预测模型具有更好的泛化能力和更高的预测精度,有效地实现了煤矿绝对瓦斯涌出量动态预测。