论文部分内容阅读
设正整数d1,d2满足gcd(d1,d2)=1,d=d1d2>3且d1无平方因子,h(d)为虚二次域Q(√-d)的类数,这里d1,d2满足下列等式d1a2+d2b2=4kn, gcd(d1a,d2b)=1, a,b,k,n∈N.k>1,n>1,b |* d2,其中符号b |* d2表示b的每个素因子整除d2.本文应用Bilu,Hanrot和Voutier关于本原因子的一个新结果,给出了这类类数问题的完整的解答.同时还给出了广义Ramanujan-Nagell方程的一般性结果.