论文部分内容阅读
针对选煤厂对浮选尾矿灰分识别的工程需求,提出了一种基于增量型极限学习机(I-ELM)的尾矿灰分识别方法。首先通过实验得到浮选尾矿图像的灰度直方图与尾矿灰分之间的关系,将由尾矿图像灰度值分布和尾矿的入射光强及反射光强组成的向量作为输入,尾矿灰分作为输出,然后利用I-ELM建立预测模型,对尾矿灰分进行识别,并与用BP神经网络和固定型极限学习机(ELM)建立的模型进行了对比。结果显示,I-ELM具有较高的预测精度,同时具有较快的学习速度,是一种比较有效的浮选尾矿灰分识别方法。