论文部分内容阅读
针对面向大规模历史数据的高并发数据流处理需求,为改进MapReduce的实时处理能力,提出了一种内存HashB树、外存SSTable文件的key/value中间结果缓存,该结构具有可划分性、可扩展性和高效性.在此基础上,利用B树的平衡性特征提出了一种基于概率的B树构造算法和多路查询算法,利用读写开销估算和缓冲区信息改造了外存文件读写策略和内外存替换算法,进一步优化了中间结果的高并发读写性能.算法分析和实验证明了该缓存的有效性.