论文部分内容阅读
Heme, as a prosthetic group of proteins, is an iron-protoporphyrin involved in a wide range of cellular functions. Cellular heme levels vary due to the accurate balance of its synthesis and degradation. The "heme sensor protein" is currently a focus of investigation because heme has been found as a cellular signaling messenger involved in various biologic processes, including gene expression, protein localization, protein stability and microRNA processing. Several eukaryotic transcriptional factors can be regulated by heme, including heme activator protein (Hap1), Bach1, REV-erba, and neuronal PAS domain protein 2 (NPAS2). Especially, the two circadian transcriptional factors serving as the heme sensor, REV-erba and NPAS2, coordinate the circadian clock with metabolic pathways. It is well established that heme regulates the activity of heme-regulated eukaryotic initiation factor 2a (eIF2a) kinase (HRI), which serves as a feedback inhibitor of protein translation in both erythroid and non- erythroid cells. Additionally, heme is involved in protein degradation by inducing the degradation of several proteins such as the iron response regulator (Irr), iron regulatory protein 2 (IRP2), Bachl, and circadian factor period 2 (Per2). The N-end rule ubiquitin-dependent protein degradation pathway has also been identified as a sensor of heme, which blocks the function of arginyl-tRNA protein transferase (ATE1) and E3 ubiquitin ligase. In this review, we summarize the regulatory roles of heme at the levels of transcription, protein translation, and protein degradation, highlighting the role of heme in maintaining cellular homeostasis.