论文部分内容阅读
提出了一种基于超椭球的兼类文本分类算法。对每一类样本,在特征空间求得一个包围该类样本的最小超椭球,使得各类样本之间通过超椭球隔开。对待分类样本,通过判断其是否在超椭球内确定其类别。若没有超椭球包围待分类样本,则通过隶属度确定其所属类别。在标准数据集Reuters 21578上的实验结果表明,该方法较超球方法提高了分类精度和分类速度。