论文部分内容阅读
【摘要】水力喷射压裂是一种利用水射流独特性质的储层改造新技术。该技术结合了水力射孔和水力压裂技术,能够垂直井孔方向在多个位置独立连续压裂改造而不使用任何机械密封装置,本文对国内外该项技术的发展和应用情况进行调研分析,并结合延长油田现场应用效果进行论证,分析影响该工艺的关键因素,指出该项技术应用的局限性及难度,最终对射流参数进行初步优化。
【关键词】水力喷射 喷砂射孔 低渗透 增产改造
1 水力喷射压裂技术原理
1.1 基本原理
水力喷射压裂技术是将一套水力喷砂射孔压裂工具连接在油管柱上,下到需射孔、压裂的位置,进行射孔压裂施工,含压裂砂的压裂液首先射穿套管、水泥环层,并在地层射开多个孔,完成射孔作业,在后续压裂时可将压裂砂和支撑剂填充到压裂缝中,从而完成压裂加砂作业,在降压后支撑剂就留在压裂缝中,保证了压裂地缝的渗透性。该工艺由三个过程共同完成,水力喷砂射孔、水力压裂以及环空挤压。通过安装在施工管柱上的水力喷射工具,利用水击作用在地层形成一个(或多个)喷射孔道,从而在近井地带产生微裂缝,实现水力喷射压裂。 1
水力喷射压裂一次管柱可进行多段压裂,施工周期短,有利于降低储层伤害;可进行定向喷射压裂,准确造缝;喷射压裂可以有效降低地层破裂压力,保证高破裂压力地层的压开和压裂施工;该工艺压井次数少,对储层伤害小,而且施工程序简单,能够产生大的经济效益。
2 水力喷射工艺影响因素分析
水力喷射压裂过程中,固体颗粒受水载体加速,高速冲击套管和岩石,产生切割作用。影响水力喷射压裂的因素主要包括流体参数、磨料参数、围压及岩石性质等。优化射流参数是该项技术的关键之一。
2.1 流体参数
流体参数的影响受压力、排量、和喷嘴直径控制。喷射深度随压力的增加呈线性增加,孔径也随压力的升高变大,当压力达到临界压力是才可破压,对应不同的最大破裂深度,当达到最大破裂深度是再增加喷射时间只能增加孔径而对射孔深度几乎不影响。
2.2 磨料参数
磨料参数主要包括磨料类型、浓度、粒度,压力和排量恒定时,磨料的切割能力随硬度的增加而增大,射孔深度并不是随磨料浓度和粒度的增加而一直增加的,相反在磨料粒径增加一定程度时射孔深度反而有下降趋势。实验室实验结果最佳浓度范围为6%—8%,使用浓度4%-10%,最佳粒度为0.4-0.6mm,现场推荐采用6%—8%,0.4-0.8mm,浓度随压力增高而变大。
3 七里村油田应用效果分析
3.1 现场试验
2011年先后进行水力喷射压裂试验5井次,郑685-6井、郑868-6和郭644-1井水力喷射压裂成功;郑844-3井因压裂过程中油套环空返水,水力喷射压裂未成功,后采用不动管柱分层压裂的方式完成压裂过程;郭644-2井因压不开,后采用常规压裂成功。
3.2 应用效果分析
为了对比水力喷射压裂效果,分别在郑685-6井、郑868-6井、郭644-1井井组上选取了同井组上的几口常规压裂井进行对比。下表是在郑685-6井、郑868-6井、郭644-1井同井组上选取的几口常规压裂井进行的压后产量对比(表1)。
可以看出,水力喷射压裂在新井中应用效果较好,郑868-8井、郭644-1井均比同井组常规压裂井增产效果更佳。
4 结论及建议
(1)水力喷射压裂工艺通过在七里村采油厂长6油层进行试验结果看,压裂增产效果明显,同时具有良好的控水效果。
(2)水力喷射压裂定向射孔能够有效控制裂缝起裂位置,降低起裂压力,节省施工时间,减少作业风险和成本。
(3)水力喷射压裂一次管柱可连续进行多段压裂,施工程序简单、周期短,特别适合水平井油层压裂改造,一般需要KQ450以上的专用压裂井口配合使用,才可提高压裂施工的安全系数。。
(4)影响水力喷射压裂的因素主要包括流体参数、磨料参数、围压及岩石性质等,优化射流参数是该项技术的关键之一。
参考文献
[1] 刘永亮,等.水平井储层改造新方法_水力喷射压裂技术[J].钻采工艺,2008
[2] 李根生,等.水力喷射压裂理论与应用[D].中国石油大学(北京),2011.6
3] 田守嶒,李根生,黄中伟,等.水力喷射压裂机理与技术研究进展[J].石油钻采工艺,2008,30
(1):58-62
[4] 黄中伟.高压水射流辅助压裂机理与实验研究[D].东营:中国石油大学,2007
【关键词】水力喷射 喷砂射孔 低渗透 增产改造
1 水力喷射压裂技术原理
1.1 基本原理
水力喷射压裂技术是将一套水力喷砂射孔压裂工具连接在油管柱上,下到需射孔、压裂的位置,进行射孔压裂施工,含压裂砂的压裂液首先射穿套管、水泥环层,并在地层射开多个孔,完成射孔作业,在后续压裂时可将压裂砂和支撑剂填充到压裂缝中,从而完成压裂加砂作业,在降压后支撑剂就留在压裂缝中,保证了压裂地缝的渗透性。该工艺由三个过程共同完成,水力喷砂射孔、水力压裂以及环空挤压。通过安装在施工管柱上的水力喷射工具,利用水击作用在地层形成一个(或多个)喷射孔道,从而在近井地带产生微裂缝,实现水力喷射压裂。 1
水力喷射压裂一次管柱可进行多段压裂,施工周期短,有利于降低储层伤害;可进行定向喷射压裂,准确造缝;喷射压裂可以有效降低地层破裂压力,保证高破裂压力地层的压开和压裂施工;该工艺压井次数少,对储层伤害小,而且施工程序简单,能够产生大的经济效益。
2 水力喷射工艺影响因素分析
水力喷射压裂过程中,固体颗粒受水载体加速,高速冲击套管和岩石,产生切割作用。影响水力喷射压裂的因素主要包括流体参数、磨料参数、围压及岩石性质等。优化射流参数是该项技术的关键之一。
2.1 流体参数
流体参数的影响受压力、排量、和喷嘴直径控制。喷射深度随压力的增加呈线性增加,孔径也随压力的升高变大,当压力达到临界压力是才可破压,对应不同的最大破裂深度,当达到最大破裂深度是再增加喷射时间只能增加孔径而对射孔深度几乎不影响。
2.2 磨料参数
磨料参数主要包括磨料类型、浓度、粒度,压力和排量恒定时,磨料的切割能力随硬度的增加而增大,射孔深度并不是随磨料浓度和粒度的增加而一直增加的,相反在磨料粒径增加一定程度时射孔深度反而有下降趋势。实验室实验结果最佳浓度范围为6%—8%,使用浓度4%-10%,最佳粒度为0.4-0.6mm,现场推荐采用6%—8%,0.4-0.8mm,浓度随压力增高而变大。
3 七里村油田应用效果分析
3.1 现场试验
2011年先后进行水力喷射压裂试验5井次,郑685-6井、郑868-6和郭644-1井水力喷射压裂成功;郑844-3井因压裂过程中油套环空返水,水力喷射压裂未成功,后采用不动管柱分层压裂的方式完成压裂过程;郭644-2井因压不开,后采用常规压裂成功。
3.2 应用效果分析
为了对比水力喷射压裂效果,分别在郑685-6井、郑868-6井、郭644-1井井组上选取了同井组上的几口常规压裂井进行对比。下表是在郑685-6井、郑868-6井、郭644-1井同井组上选取的几口常规压裂井进行的压后产量对比(表1)。
可以看出,水力喷射压裂在新井中应用效果较好,郑868-8井、郭644-1井均比同井组常规压裂井增产效果更佳。
4 结论及建议
(1)水力喷射压裂工艺通过在七里村采油厂长6油层进行试验结果看,压裂增产效果明显,同时具有良好的控水效果。
(2)水力喷射压裂定向射孔能够有效控制裂缝起裂位置,降低起裂压力,节省施工时间,减少作业风险和成本。
(3)水力喷射压裂一次管柱可连续进行多段压裂,施工程序简单、周期短,特别适合水平井油层压裂改造,一般需要KQ450以上的专用压裂井口配合使用,才可提高压裂施工的安全系数。。
(4)影响水力喷射压裂的因素主要包括流体参数、磨料参数、围压及岩石性质等,优化射流参数是该项技术的关键之一。
参考文献
[1] 刘永亮,等.水平井储层改造新方法_水力喷射压裂技术[J].钻采工艺,2008
[2] 李根生,等.水力喷射压裂理论与应用[D].中国石油大学(北京),2011.6
3] 田守嶒,李根生,黄中伟,等.水力喷射压裂机理与技术研究进展[J].石油钻采工艺,2008,30
(1):58-62
[4] 黄中伟.高压水射流辅助压裂机理与实验研究[D].东营:中国石油大学,2007