论文部分内容阅读
现有的目标跟踪算法大多采用传统的手工特征或神经网络的某一层特征描述目标的外观,不利于跟踪,文中提出一种基于多层深度特征的自适应更新目标跟踪算法。采用经过预训练的深层卷积神经网络分别提取低层和高层信息用以描述目标的空间特征和语义特征,通过对两层特征信息的学习得到两个滤波模板,对应求得两个滤波响应,这两个滤波响应以不同的权重决定最后的跟踪结果。算法中还设计了对目标外观模型和滤波模板的自适应更新方案,能更好地适应目标的外观变化以及遮挡问题。采用多层深度特征描述目标外观,并且利用提取的特征训练两个滤波模板,