【摘 要】
:
推荐系统本质上是一种信息检索工具,它检索出有用信息并推荐给特定的用户.组推荐系统通过不同的融合策略融合群组偏好,支持群组用户访问当前的热门兴趣点.传统组推荐模型没有
【机 构】
:
郑州大学 信息工程学院,郑州,450001郑州大学 软件技术学院,郑州,450002;
论文部分内容阅读
推荐系统本质上是一种信息检索工具,它检索出有用信息并推荐给特定的用户.组推荐系统通过不同的融合策略融合群组偏好,支持群组用户访问当前的热门兴趣点.传统组推荐模型没有将时间因子对用户选择兴趣点的影响计算在内,且传统协同过滤推荐算法往往对数据的稀疏性较为敏感.本文提出一个混合推荐模型(AGRT),综合K-均值聚类算法和隐语义模型(LFM)技术,将其应用于群组兴趣点.考虑到用户在不同时间点的不同兴趣偏好,AGRT利用K-means算法对用户数据集合基于时间点聚类,划分为不同的簇,在与当前推荐时间最为接近的用户数据簇上进行兴趣点推荐,采用LFM隐语义模型对用户数据进行矩阵分解,通过将分解矩阵再次相乘获得用户对未评分地点的评分数据,解决用户数据稀疏性的问题.实验结果表明,AGRT模型在低相似度(随机)群组和高相似度群组评测条件下下较文献[3]中提出的HAaB提高了5.19%和2.06%,具有有效的改进.
其他文献
针对云计算环境下的多目标任务调度问题,提出一种新的基于Q学习的多目标优化任务调度算法(Multi-objective Task Scheduling Algorithm based on Q-learning,QMTS).该算法的
K中心选址作为一种经典问题,学者们提出了很多好的解决方法,但是对于加权距离连续K中心选址问题的研究一直没有很好的进展.本文针对连续K中心选址问题,以最小加权距离作为优
多语言文本的情感分析是情感分析领域的重要问题之一,而现有的情感分析方法着重于对单语言文本的研究.本文针对中英混合文本提出了一种细粒度情感分析模型,通过基于大规模语
人工智能的飞速发展对高性能计算提出了更高的要求,异构计算环境下任务调度问题一直是高性能计算中的关键问题.本文提出一种基于优先队列划分的调度算法(PQDSA),该算法根据DA
链路预测作为复杂网络分析的一项重要任务,其目的是寻找节点间缺失(新)的链路,识别虚假交互,对于挖掘和分析网络的演化,重塑网络模型具有重要意义.传统的链路预测方法多数采
随着安全关键性系统的日益复杂,如何提高安全关键系统的安全性成为急需解决的问题.基于形式化模型的复杂系统设计与分析是一种重要的安全性分析方法.本文工作对AIR6110标准中
针对无人机自组网和地面控制站通信时网关节点持续时间短并由此带来的数据传输时延过大和成功率不高等问题,提出了一种基于无人机-地面控制站链路状态预测的网关选择算法.该
提出了一种云数据中心基于数据依赖的虚拟机选择算法DDBS(data dependency based VM selection).参考Cloudsim项目中方法,将虚拟机迁移过程划分为虚拟机选择操作(VM selectio
针对无设备的室内重点区域监测问题,本文提出一种Wi-KAM方法,通过获取室内人员的实时位置信息,判断重点区域内部的人员存在情况和区域边界的入侵情况.本方法使用高斯低通滤波
差分隐私因具有严格推理和证明的隐私保证,常被应用于位置隐私保护场景中.用户进行位置连续查询时,会引起噪声叠加导致查询精度下降,目前基于规则树结构的差分隐私虽然能降低