论文部分内容阅读
主成分分析法(PCA)等基于L2范数最小均方准则的目标特征提取方法在合成孔径雷达(SAR)图像目标识别中得到广泛应用,L2范数易受SAR图像中野值的干扰,影响目标特征提取效果。介绍一种基于L1范数双向二维主成分分析法(B2DPCA.L1)的目标特征提取方法。L1范数对野值有较强的鲁棒性,通过在L1范数框架下实现B2DPCA,有效地改善了样本中野值对特征提取的影响,同时减少了特征矩阵维数,提高了目标识别率。实验表明,所提出方法的识别性能优于基于L2范数的特征提取方法。