论文部分内容阅读
This paper discusses robot formations in a distributed framework. The most important contribution is the incorporation of robustness into robot formation systems. When robots carry out tasks in a poor environment, the parameters in their models fluctuate around the nominal values, which may destroy the stability of the formation system. By modeling the group of robots as an interconnected system, we aim to develop a set of robust distributed controllers such that the overall system is robust to external disturbance as well as parameter uncertainty. Based on the graph rigidity theory, we also consider the rotation of a formation that plays an important role in real-time applications. Both simulations and real-time experiments are carried out to validate the effectiveness of the proposed framework.
The most important contribution is the incorporation of robustness into robot formation systems. When robots carry out tasks in a poor environment, the parameters in their models fluctuate around the nominal values, which may destroy the stability of the formation system. By modeling the group of robots as an interconnected system, we aim to develop a set of robust distributed controllers such that the overall system is robust to external disturbance as well as parameter uncertainty. Based on the graph rigidity theory, we also consider the rotation of a formation that plays an important role in real-time applications. Both simulations and real-time experiments are carried to validate the effectiveness of the proposed framework.