论文部分内容阅读
迭代收缩阈值算法(ISTA)求解离焦深度恢复动态优化问题时,采用固定迭代步长,导致算法收敛效率不佳,使得重建的微观3D形貌精度不高。为此,提出一种基于加速算子梯度估计和割线线性搜索的方法优化ISTA——FL-ISTA。首先,在每一次迭代中,由当前点和前一个点的线性组合构成加速算子重新进行梯度估计,更新迭代点;其次,为了改变迭代步长固定的限制,引入割线线性搜索,动态确定每次最优迭代步长;最后,将改进的迭代收缩阈值算法用于求解离焦深度恢复动态优化问题,加快算法的收敛速度、提高微观3D形貌重建的精度。在对