论文部分内容阅读
针对烧结过程的时变、强非线性等特点,基于神经网络和粒子群优化算法,提出一种预测透气性状态的集成方法.采用神经网络分别建立透气性预测模型,采用粒子群优化算法对神经网络进行训练,提高预测模型的实时性;进而借助模糊分类器将预测子模型实现有机融合.最后实际运行结果表明,提出的集成模型具有较高的预测精度和较强的自学习能力,并且在工况波动严重的情况下,仍然具有好的预测效果.