论文部分内容阅读
为了准确地表达PV型旋风分离器的粒级效率与结构参数、操作参数之间复杂的非线性关系,采用PCA-PSO-SVR混合算法对PV型旋风分离器的粒级效率进行建模。采用主元分析法(PCA)对实验数据集进行降维处理,通过粒子群优化算法(PSO)对支持向量回归(SVR)模型中的超参数进行优化。将优化后的回归模型和其它机器学习模型在预测准确性、泛化性、鲁棒性以及运行速度方面进行了对比,结果表明,利用PCA-PSO-SVR算法对PV型旋风分离器的粒级效率建模是一种准确而有效的方法。