论文部分内容阅读
融合粒子滤波与交互多模算法的优势,提出了一种基于进化粒子滤波的交互多模算法(EPF-IMM)。该算法将遗传进化思想引入到传统的粒子滤波,在粒子迭代中采用遗传算法中的编码、交叉、变异等算子实现粒子的自适应进化且隐含重采样,从而改进其粒子退化现象。然后利用粒子滤波信息,在交互多模型中进行更新运算。既解决了IMM算法对非线性、非高斯环境的适应性问题,又解决了PF的无关联对应模型问题。与标准IMM算法进行高机动目标跟踪性能比较,试验仿真结果表明,EPF-IMM算法的跟踪精度高。