论文部分内容阅读
提出一种基于模糊聚美-最小二乘向量机-神经网络(FCM-LSSVM-ANN)的多模型融合方法,对全工况下选择性催化还原(SCR)入口温度进行提前预测。采用模糊聚类对不同工况下的锅炉系统运行数据进行分解,并建立若干个基于最小二乘支持向量机的预测模型,最后采用神经网络对预测结果进行非线性融合得到最终预测结果。多模型融合的方法可以对锅炉系统全工况的运行特性进行学习,能更准确地完成负荷大范围波动条件下SCR入口温度预测。同时本文采用某600 MW机组实际运行数据对所提方法进行对比验证,结果表明本文方法能够实