论文部分内容阅读
Based on light-use efficiency model, an MODIS-derived daily net primary production (NPP) model was developed. In this model, a new model for the fraction of photosynthetically active radiation absorbed by vegetation (FPAR) is developed based on leaf area index (LAI) and albedo parameters, and a pho- tosynthetically active radiation (PAR) is calculated from the combination of Bird’s model with aerosol optical thickness and water vapor derived from cloud free MODIS images. These two models are inte- grated into our predicted NPP model, whose most parameters are retrieved from MODIS data. In order to validate our NPP model, the observed NPP in the Qianyanzhou station and the Changbai Mountains station are used to compare with our predicted NPP, showing that they are in good agreement. The NASA NPP products also have been downloaded and compared with the measurements, which shows that the NASA NPP products underestimated NPP in the Qianyanzhou station but overestimated in the Changbai Mountains station in 2004.
Based on light-use efficiency model, an MODIS-derived daily net primary production (NPP) model was developed. In this model, a new model for the fraction of photosynthetically active radiation absorbed by vegetation (FPAR) is developed based on leaf area index (LAI) and albedo parameters, and a pho- tosynthetically active radiation (PAR) is calculated from the combination of Bird’s model with aerosol optical thickness and water vapor derived from cloud free MODIS images. These two models are inte grated into our predicted NPPs model, whose most parameters are retrieved from MODIS data. In order to validate our NPP model, the observed NPP in the Qianyanzhou station and the Changbai Mountains station are used to compare with our predicted NPP, showing that they are in good agreement. The NASA NPP products also have been downloaded and compared with the measurements, which shows that the NASA NPP products underestimated NPP in the Qianyanzhou station but overestimated in the Changbai Moun tains station in 2004.