论文部分内容阅读
传统的宏观传热理论难以准确表征几何结构尺度小于或接近声子平均自由程的高功率电子器件的产热与传热过程,此时器件中能量激发的时间尺度与声子的特征时间尺度相当,甚至小于声子的特征时间尺度,不能满足传统传热理论的假设.本文针对微/纳尺度场效应晶体管的工作过程,建立描述其内部产热及传热特性的多尺度格子-Boltzmann介观模型,通过在模型中引入源项去描述器件内部电子和声子的相互作用,分析计算不同工作状态下晶体管单元的温度分布特征,研究热管理方式对晶体管温度分布的影响,从微/纳尺度揭示了场效应晶体管的产热机理及传热特性,为热设计工作者提供一定的理论依据.
The traditional theory of macroscopic heat transfer can not accurately characterize the heat generation and heat transfer of high power electronic devices whose geometric scale is smaller than or close to the mean free path of phonons. At this time, the time scale of energy excitation in the device corresponds to the characteristic time scale of phonons , Which is even smaller than the phonon time scale and can not satisfy the hypothesis of traditional heat transfer theory.In this paper, a multi-scale lattice-Boltzmann mesoscopic system is developed to describe the internal heat production and heat transfer characteristics of micro / nano-scale field-effect transistors Model by introducing the source term in the model to describe the interaction between the electronic and phonon inside the device to analyze and calculate the temperature distribution characteristics of the transistor unit under different operating conditions to study the influence of the thermal management mode on the transistor temperature distribution from the micro / Reveals the heat-generating mechanism and heat transfer characteristics of the field-effect transistor, and provides certain theoretical basis for thermal design workers.