论文部分内容阅读
在过程系统综合中,许多问题属于非线性规划(NLP)和混合整数非线性规划(MINLP)范畴.它们大都具有奇异、多峰、刚性等特性.人们很难有效地得到它们稳定的全局最优解.而知识性、经验性约束使基于梯度方向的Newton方法无法有效地获取该类问题的全局最优解.通常只能得到该类问题的局部最优解.遗传算法的随机性虽为求取NLP和MINLP问题的全局最优解提供了可能,但是随机过程中的盲目性及“伪穷举”性却又限制了该算法的搜索效率.针对过程系统综合问题的特殊性,在信息提取技术对搜索空间进行充分数据挖掘的基础上,用遗传算