论文部分内容阅读
针对传统多模型自适应控制中子模型数量过多、学习和自适应能力的局限性等问题,将神经网络的学习能力和非线性逼近能力与多模型切换的思想相结合,提出基于主元分析的径向基(RBF)神经网络多模型切换控制算法。首先,基于主元分析法进行工况区域识别。其次,在不同的工况区域内采用RBF神经网络建立多个子模型并设计相应的控制器。最后,根据性能指标函数选择相应的控制器以得到最佳的控制效果。仿真结果表明,该算法大大减少了子模型数量,并改善了系统的动态性能。