论文部分内容阅读
动态场景的外形或表观在很大程度上往往受到一个潜在低维动态过程的控制。基于视频序列之间的时间相干特性,引入一种称为自编码(autoencoder)的特殊双向深层神经网络,采用CRBM(continuous restricted Boltzmann machine)的网络结构,用来学习序列图像的低维流形结构。将autoencoder用于人体步态序列的实验表明,该方法能提供从高维视频帧到具有一定物理意义过程的低维序列的映射,并能从低维描述中恢复高维图像序列。