论文部分内容阅读
With the rapid development of ytterbium-doped fiber lasers, some obtrusive limitations on power scaling appeared. In order to avoid these problems, a scheme called tandem pumping is introduced into the fiber laser field. In this paper, the optical properties of an ytterbium-doped tandem-pumped fiber oscillator are presented. According to the oscillator profile, the proper gain fiber type and pump wavelength range are picked out, under the comprehensive consideration of laser conversion efficiency and beam quality. In addition, the photodarkening performances of tandem pumping lasers and conventional ones are compared based on practical application, with all possible impact parameters taken into account. Moreover, an all-fibered tandem-pumped oscillator centered at 1079.5 nm is built, in the way of clad pumping by a 1030-nm fiber laser. The laser power of the oscillator reaches 7 W, with an opto-optic efficiency of 82.4%.
With the rapid development of ytterbium-doped fiber lasers, some obtrusive limitations on power scaling was. In this case, a scheme called tandem pumping is introduced into the fiber laser field. In this paper, the optical properties of an ytterbium- doped tandem-pumped fiber oscillator are presented. According to the oscillator profile, the proper gain fiber type and pump wavelength range are picked out, under the comprehensive consideration of laser conversion efficiency and beam quality. In addition, the photodarkening performances of tandem pumping lasers And all of the available ones are compared based on practical application, with all possible impact parameters taken into account. with an all-fibered tandem-pumped oscillator centered at 1079.5 nm is built, in the way of clad pumping by a 1030-nm fiber laser. The laser power of the oscillator reaches 7 W, with an opto-optic efficiency of 82.4%.