论文部分内容阅读
BP神经网络是目前应用最广泛的人工神经网络模型之一,在分类和识别上表现出良好的特性,因此被研究者用于认知诊断评估以对被试进行诊断分类。通过模拟研究,考查属性个数、属性层级关系、测验长度、题目质量、测试样本量5个因素对BP神经网络在认知诊断中分类准确性的影响。结果表明:1)基于BP神经网络的认知诊断分类准确率不依赖于测试样本量;2)题目质量和测验长度对BP神经网络的诊断准确率有显著的积极影响;3)属性个数对BP神经网络的分类准确率有消极影响;4)题目质量一定程度上会影响BP诊断方法在不同属性层级结构上的分类