论文部分内容阅读
基于递阶结构的遗传算法可以同时对神经网络进行拓扑结构优化和权重的求解,具有较高的学习效率。针对HGA在优化神经网络过程中的一些参数,如适应度函数、交叉概率和变异概率等做了一些研究,并且比较HGA与一般遗传算法、BP算法的区别,把HGA和BP2种算法结合起来优化神经网络,最后给出仿真实例。